We review classical linear regression using vector-matrix notation. In particular, we derive a) the least-squares solution, b) the fit’s coefficient covariance matrix — showing that the coefficient estimates are most precise along directions that have been sampled over a large range of values (the high variance directions, a la PCA), and c) an unbiased estimate for the underlying sample variance (assuming normal sample variance in this last case). We then review how these last two results can be used to provide confidence intervals / hypothesis tests for the coefficient estimates. Finally, we show that similar results follow from a Bayesian approach.

Last edited July 23, 2016.